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Topic of the talk ! nformatics

® General-purpose method for estimating statistical models from incomplete data.
Journal of Machine Learning Research, 2023: jmlr.org/papers/v24/21-1373.html.

Code: github.com/vsimkus/variational-gibbs-inference.

® Demo: nbviewer.org/github/vsimkus/variational-gibbs-
inference/blob/main/notebooks/VGI_demo.ipynb.
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Overview

2. Some problems with direct estimation from incomplete data
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* Marginalising the missing variables {pg(xo, m) dm is generally not tractable.
® What can we do if simplifying assumptions cannot be inserted?

® Expectation-maximisation (EM) (assuming ignorable missingness)
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* E-step: Maximise w.r.t. f(xmy | %) for Vai € D: f(xm | L) = pot (Tm | T2).

* M-step: Maximise w.r.t. : 6'*! = arg max, % Zfil Ep e (@nlai) [logpg(mg,mm)]
® Monte Carlo EM: Approximate the expectation using Monte Carlo average.
® Then, M-step corresponds to fitting pg(x) with completed data.

Issue with Monte Carlo EM

® Conditional sampling of pg(xm | o) is generally intractable or inefficient.
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approximate the expectation.
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e Computing the marginal density fé)(:cg1 | ,) of a Markov chain remains intractable:

7—1
fi(ah, | @o) = f 140 | 20) [ ] (@l | mo,al) dal, .. dag .
h=0

® So how can we optimise the parameters ¢ of the kernel r¢?
® Instead of optimising ¢ over the full length of the Markov chains, we “cut” the chains

just before the last transition and optimise over the last step of the chain.
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pB(xja Lmjs wo)
q¢j (xj | C[:m\jv mo)

10g po(To) = B (jlidx(m)) 1 (@n [w0)as, (&) |@m- ; @o) llog ] + Const.

We only need samples from penultimate step of the Markov chain f'~1.
e Can optimise w.r.t. @ and ¢ using stochastic gradient ascent.

® Maximising the above w.r.t. ¢ corresponds to minimising the KL divergence:
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Objective for learning 6 and ¢:

pB(xja Lmjs wo)
q¢j (xj | C[:m\jv mo)

10g po(To) = B (jlidx(m)) 1 (@n [w0)as, (&) |@m- ; @o) llog ] + Const.

We only need samples from penultimate step of the Markov chain f'~1.
Can optimise w.r.t. @ and ¢ using stochastic gradient ascent.

Maximising the above w.r.t. ¢ corresponds to minimising the KL divergence:

e (jliax(m)) 1= (e s 120) [DKL(%]» (@) [ Zmj> o) || Po(z; | $m\jawo))]

The fitted kg approximates the Gibbs kernel with the stationary distribution pg(Tm | o).
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1

2
3:
4

. Create K-times imputed data Dy using fo

. for t in [1, max_epochs| do
Sample mini-batch B from Dy
Update the imputations in By:

k) L Gibbs, (x¢, %;:cﬁi”“)),VxSﬁ”“) € Bk
Persist the imputations in Bx to Dk

end for
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¢ Direct fitting by (approximately) marginalising the missing variables x,,

® General-purpose method for estimating pg(x) from incomplete data.

* Mitigated the need for 2™ conditional distributions to just M by representing the
variational distribution via a learnable Gibbs kernel.

® Used “persistent” chains to efficiently sample imputations using the learnt Gibbs kernel.

e “Cut” the Markov chains to make optimisation of ¢ efficient.
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Summary

e Statistical models and the missing data issue.
® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.
® Some problems with direct estimation from incomplete data.
* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.
e Standard amortised VI requires 2 variational distributions, which is inefficient.
® Variational Gibbs Inference.
® General purpose method for model estimation from incomplete data.
® Achieves good performance on normalising flow and VAE estimation, compared to other
methods.
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Thank you for listening.
Questions?



TY of EDINBURGH

References | %9 informatics

[3
[3
[3
3

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the EM
Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1-22. (Cited on slide 6)

Simkus, V., Rhodes, B., and Gutmann, M. U. (2023). Variational Gibbs Inference for Statistical Model Estimation
from Incomplete Data. Journal of Machine Learning Research, 24(196):1-72. (Cited on slide 2, 9)

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In
International Conference on Machine Learning (ICML), pages 1064-1071. (Cited on slide 10)

Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo Implementation of the EM Algorithm and the Poor Man's
Data Augmentation Algorithms. Journal of the American Statistical Association, 85(411):699-704. (Cited on slide 6)

19/19



	Statistical models and the missing data issue
	Some problems with direct estimation from incomplete data
	Variational Gibbs Inference

