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Topic of the talk ! nformatics

® General-purpose method for estimating statistical models from incomplete data.
Journal of Machine Learning Research, 2023: jmlr.org/papers/v24/21-1373.html.

Code: github.com/vsimkus/variational-gibbs-inference.

® Demo: nbviewer.org/github/vsimkus/variational-gibbs-
inference/blob/main/notebooks/VGI_demo.ipynb.
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Overview

1. Statistical models and the missing data issue
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* Variational autoencoders (VAEs)

po() = J po(a | z)pe(z) dz

® pg(z) is often a simple distribution such as
standard Gaussian.

® po(x | z) is a simple distribution (e.g. Gaussian or
Multinomial), parametrised via a neural network.
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Overview

2. Some problems with direct estimation from incomplete data
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Expectation Maximisation (EM)

* Marginalising the missing variables {pg(xo, m) dm is generally not tractable.
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* Marginalising the missing variables {pg(xo, m) dm is generally not tractable.
® What can we do if simplifying assumptions cannot be inserted?

® Expectation-maximisation (EM) (assuming ignorable missingness)

Lo, Tm Lo, Lm “ "
log pg(xo) = logff(a:m ] cco)pfé(’z(c °| - 3 dm = Efizao) [log pf?; °| - ;] , “ELBO
m o m o

* E-step: Maximise w.r.t. f(xmy | %) for Vai € D: f(xm | L) = pot (Tm | T2).

* M-step: Maximise w.r.t. : 6'*! = arg max, % Zfil Ep e (@nlai) [logpg(mg,mm)]
® Monte Carlo EM: Approximate the expectation using Monte Carlo average.
® Then, M-step corresponds to fitting pg(x) with completed data.

Issue with Monte Carlo EM

® Conditional sampling of pg(xm | o) is generally intractable or inefficient.
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Variational approximation to pgi:(xm | ,)

Variational inference (VI)
® Vx, € D specify a fo(Tm | To) € Q().
e E-step: Maximise the ELBO w.r.t. ¢.

* M-step: Sample fg(zm | o) to
approximate the expectation.
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Variational approximation to pgi:(xm | ,) 0% informatics
Variational inference (VI)
* Va, € D specify a fo(Tm | o) € Q()). ® Choice of Q(¢) is in our control.
e E-step: Maximise the ELBO w.r.t. ¢. ® Turns inference to optimisation.
* M-step: Sample fg(zm | o) to e Can fit using SGD.
approximate the expectation. e Efficient if |D| is small.

Amortised VI

® Parametrise fg(xm | o) with a single
neural network NNy () for Va, € D.

Is inefficient if |D] is large.

dl d2 d3 d4 f¢,(:13fn | il!é) o
2 (ol | 7 |2} | @k | fo(ad|at,ad od) e Efficient for large |D|.
a? ? x% x% ? f¢($%,l’i | x%x%) ‘
23| 2 | v |7 | ad | fa(edad el ad) * Need one fg(xm | o) for each pattern

of missingness (2 in total).
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3. Variational Gibbs Inference
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Variational Gibbs Inference: Core idea

Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data,
JMLR, 2023

® General-purpose method for estimating pg(x) from incomplete data.

* Efficient for large |D| and mitigates the need for 2 conditional distributions.
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Variational Gibbs Inference: Persistent chains

® Sampling long Markov chains at each iteration t of the algorithm is costly.

Markov chain length T
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Sampling long Markov chains at each iteration ¢ of the algorithm is costly.
Use “persistent” chains: initialise the chains at the last state of the previous iteration.
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Sampling long Markov chains at each iteration ¢ of the algorithm is costly.
Use “persistent” chains: initialise the chains at the last state of the previous iteration.
Can now use short chains, that is using small 7, at every iteration ¢.
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Variational Gibbs Inference: “Cutting” chains
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e Computing the marginal density fé)(:cg1 | ,) of a Markov chain remains intractable:

7—1
fi(ah, | @o) = f 140 | 20) [ ] (@l | mo,al) dal, .. dag .
h=0

® So how can we optimise the parameters ¢ of the kernel r¢?

12/21



DINBURGH

Markov chain length T

- , >

€ .

= «0 0 ! %0

E £ | To) — o fY(@L | To) — o i — L fO(a, | o) > Update 6 and ¢ using ELBO
&0 &\ Tm | To &\ Tm | To W J(@Tm | To) — pdate € and ¢ using

o : )

< S T

s ‘ sl il HE

© S P11 ¢ b )

s > qu(mm | o) —> fd,(wm | o) —> i f¢(mm | o) ----» Update 6 and ¢ using ELBO
@ :

2y :

e Computing the marginal density fé)(:cg1 | ,) of a Markov chain remains intractable:

7—1
fi(ah, | @o) = f 140 | 20) [ ] (@l | mo,al) dal, .. dag .
h=0

® So how can we optimise the parameters ¢ of the kernel r¢?
® Instead of optimising ¢ over the full length of the Markov chains, we “cut” the chains

just before the last transition and optimise over the last step of the chain.
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® Objective for learning 6 and ¢:
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pB(xja Lmjs wo)
q¢j (xj | C[:m\jv mo)

10g po(To) = B (jlidx(m)) 1 (@n [w0)as, (&) |@m- ; @o) llog ] + Const.

We only need samples from penultimate step of the Markov chain f'~1.
e Can optimise w.r.t. @ and ¢ using stochastic gradient ascent.

® Maximising the above w.r.t. ¢ corresponds to minimising the KL divergence:
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Objective for learning 6 and ¢:

pB(xja Lmjs wo)
q¢j (xj | C[:m\jv mo)

10g po(To) = B (jlidx(m)) 1 (@n [w0)as, (&) |@m- ; @o) llog ] + Const.

We only need samples from penultimate step of the Markov chain f'~1.
Can optimise w.r.t. @ and ¢ using stochastic gradient ascent.

Maximising the above w.r.t. ¢ corresponds to minimising the KL divergence:

e (jliax(m)) 1= (e s 120) [DKL(%]» (@) [ Zmj> o) || Po(z; | $m\jawo))]

The fitted kg approximates the Gibbs kernel with the stationary distribution pg(Tm | o).
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1

2
3:
4

. Create K-times imputed data Dy using fo

. for t in [1, max_epochs| do
Sample mini-batch B from Dy
Update the imputations in By:

k) L Gibbs, (x¢, %;:cﬁi”“)),VxSﬁ”“) € Bk
Persist the imputations in Bx to Dk

end for
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Variational Gibbs Inference: Summary 020 informatics

¢ Direct fitting by (approximately) marginalising the missing variables x,,

® General-purpose method for estimating pg(x) from incomplete data.

* Mitigated the need for 2™ conditional distributions to just M by representing the
variational distribution via a learnable Gibbs kernel.

® Used “persistent” chains to efficiently sample imputations using the learnt Gibbs kernel.

e “Cut” the Markov chains to make optimisation of ¢ efficient.
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Log-likelihood

—F— VGI (Proposed) ~ —F— PLMCMC ~ —F— RQ-Flow (Complete)

POWER GAS HEPMASS MINIBOONE
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Variational Gibbs Inference: Results (VAE) 0% informatics

Log-likelihood
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(Proposed) BN missForest HIVAE —— VAE (Complete)
Il MICEForest B Partial VAE+
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Missingness

Model parameters: ~682K. Dimensionality: 560.
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Summary

e Statistical models and the missing data issue.

18/21



"EDINBURGH

Summary

e Statistical models and the missing data issue.
® Modern models, such as normalising flows and VAEs, are very flexible.

18/21



Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

18/21



"EDINBURGH

Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

® Some problems with direct estimation from incomplete data.

18/21



Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

® Some problems with direct estimation from incomplete data.
* Marginalisation § pg (2o, ©m) dm is generally intractable.

18/21



Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

® Some problems with direct estimation from incomplete data.

* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.

18/21



Summary

e Statistical models and the missing data issue.
® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.
® Some problems with direct estimation from incomplete data.
* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.
e Standard amortised VI requires 2 variational distributions, which is inefficient.

18/21



Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

® Some problems with direct estimation from incomplete data.

* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.
® Standard amortised VI requires 2 variational distributions, which is inefficient.

® Variational Gibbs Inference.

18/21



Summary

e Statistical models and the missing data issue.

® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.

® Some problems with direct estimation from incomplete data.
* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.
e Standard amortised VI requires 2 variational distributions, which is inefficient.
® Variational Gibbs Inference.
® General purpose method for model estimation from incomplete data.

18/21



Summary

e Statistical models and the missing data issue.
® Modern models, such as normalising flows and VAEs, are very flexible.
® But, they are formulated for complete data.
® Some problems with direct estimation from incomplete data.
* Marginalisation § pg (2o, ©m) dm is generally intractable.
® EM algorithm requires sampling conditionals pg(xm | o) for Va, € D, which is expensive.
e Standard amortised VI requires 2 variational distributions, which is inefficient.
® Variational Gibbs Inference.
® General purpose method for model estimation from incomplete data.
® Achieves good performance on normalising flow and VAE estimation, compared to other
methods.
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Thank you for listening.
Questions?
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